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Abstract— The paper presents a formalism that connects func-
tional properties of neurons with the properties of membrane
proteins treated as abstract probabilistic machines. The machines
are referred to as Probabilistic Molecular Machines (PMM).
It is shown that ensembles of PMMs (EPMM) provide robust
statistical implementation of mixed-signal computers combining
the dynamical capabilities of analog computers with the sequenc-
ing capabilities of state machines. The classical Hodgkin and
Huxley model is reformulated in terms of two EPMMs and is
used as a detailed example illustrating the structure and the
representational possibilities of the PMM/EPMM formalism.

I. INTRODUCTION

Computational theory of neural networks studies dynamical
systems described by large sets of nonlinear differential equa-
tions. Where do these ”neural” differential equations come
from? Some differential equations describe the accumulation
of charges on the surfaces of cell membranes or the accumula-
tion of atoms and molecules in cellular compartments. Others
deal with kinetics of chemical reactions. The majority of
the differential equations employed in today’s neural network
models come from these sources.

A less utilized source of neural differential equations is
associated with the kinetics of conformations of membrane
proteins (especially ion channels). The three differential equa-
tions describing the behavior of the n-, m-, and h-gates in the
classical Hodgkin and Huxley (HH) model [1] give an example
of the differential equations of this type.

What is the information processing significance of such
differential equations? This paper develops the known general
idea – the idea is implicitly present in the HH model and has
been discussed elsewhere – that, at the information processing
level, some membrane proteins can be treated as abstract
probabilistic machines (the first-order Markov systems). Such
machines are referred to in this paper as Probabilistic Molec-
ular Machines (PMM). It is shown that ensembles of PMMs
(EPMM) provide a robust statistical implementation of a class
of mixed-signal computers combining the dynamical capabil-
ities of analog computers with the sequencing capabilities of
state machines.

The paper is organized as follows. Section II gives a formal
definition of the concept of a PMM. Section III defines
the concept of an ensemble of PMMs (EPMM). Section
IV describes a model of a cell with several ensembles of
ion channels represented as EPMMs interacting via common
membrane potential. The model is implemented as an inter-
active C++ program that allows the user to simulate a cell

with up to 10 ion channels represented as PMMs with up to
18 states each. The program has two simulation modes: the
continuous mode for the infinite number of PMMs, and the
Monte-Carlo mode for the number of PMMs from 1 to 10000
for each channel. Unlike the previously developed programs
employing the notion of a membrane protein as a first-order
Markov system – see, for example, [2], [3] – the above
program allows one to simulate patch-clamp experiments and
study effects of fluctuations.

Section V reformulates the HH model in terms of two
EPMMs corresponding to the ensembles of potassium and
sodium channels. The potassium channel is represented as
a 16-state PMM corresponding to 4 independent n-gates,
and the sodium channel is represented as a 16-state PMM
corresponding to 3 independent m-gates and one independent
h-gate. These 16-state PMMs are reduced, respectively, to the
equivalent 5-state and 8-state PMMs – this leads to 5+8−2 =
11 kinetic equations vs. the 3 kinetic equations used in the
HH model (see [4], p. 585). Quite remarkably, both models
produce close (but not identical) simulation results. (Note that
the HH mathematical model doesn’t follow rigorously from
the HH gate model.)

Section VI discusses some implications of the PMM/EPMM
formalism for the theory of information processing in the
brain.

II. CONCEPT OF A PROBABILISTIC MOLECULAR MACHINE

DEFINITION. A Probabilistic Molecular Machine (PMM)
is a system (X,Y,S, α, ω), where

• X and Y are the sets of real input and output vectors,
respectively

• S= {s0, ..sn−1} is a finite set of states
• α : X × S × S → R′ is a function describing the

input-dependent conditional probability densities of state
transitions, where
α(x, si, sj)dt is the conditional probability of transfer
from state sj to state si during time interval dt,
x ∈ X is the value of input, and R′ is the set of
non-negative real numbers. The components of x are
called generalized potentials. They can be interpreted
as membrane potential and/or concentrations of different
neurotransmitters.

• ω : X × S → Y is a function describing output. The
components of y are called generalized currents. They
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can be interpreted as ion currents and/or the flows of
second messengers.

Let x ∈ X, y ∈ Y, s ∈ S be, respectively, the values of input,
output, and state at time t, and let Pi be the probability that
s = si. The work of a PMM is described as follows:

dPi

dt
=

∑

j �=i

α(x, si, sj)Pj − Pi

∑

j �=i

α(x, sj , si) (1)

at t = 0
n−1∑

i=0

Pi = 1 (2)

y = ω(x, s) (3)

Summing the left an the right parts of equations 1 for i =
0, ..n− 1, it is easy to verify that condition 2 holds for any t.

III. CONCEPT OF AN ENSEMBLE OF PMMS (EPMM)

DEFINITION. An Ensemble of Probabilistic Molecular
Machines (EPMM) is a set of identical independent PMMs
with the same input vector, and the output vector equal to the
sum of output vectors of individual PMMs.

Let N be the total number of PMMs, Ni be the number of
PMMs in state si (the occupation number of state si), and let
ei = Ni/N be the relative occupation number of state si.
We have

y = N

n−1∑

i=0

eiω(x, si) (4)

The behavior of the average ei is described by the equations
similar to (1) and (2).

dei

dt
=

∑

j �=i

aij(x)ej − ei

∑

j �=i

aji(x) (5)

at t = 0
n−1∑

i=0

ei = 1 (6)

where aij(x) = α(x, si, sj) describes the rate constant of
transfer between states sj and si.

−Σ a
ji

(x)
 j=i

ai n-1(x)ai0(x)

e0

ei

en-1

Input-controlled
coefficient matrix

Fig. 1. EPMM as a mixed-signal computer

The structure of equations 5 is illustrated in Figure 1.
The diagram suggests that an EPMM provides a statistical
implementation of a mixed-signal computer with the rate
constants serving as input-controlled coefficients (that can
serve as switches). This implementation is extremely robust
because the properties of the whole computer are determined
by the properties of a single PMM. No interaction among
PMMs is needed. Variable external connections are replaced
by variable internal probabilities, and statistics does the trick.
It is tempting to say that, in the same way as statistical
mechanics of simple molecules leads to thermodynamics,
the statistical mechanics of very complex molecule-machines
leads to neural computations.

IV. CELL MODEL WITH SEVERAL ION CHANNELS

The block diagram of a one-compartment cell model with
several ion channels is shown in Figure 2. The cell membrane
is represented by a single integrator with the coefficient
1/C, where C is the capacitance of the cell membrane
(C ≈ 1µF/cm2). The black boxes CH0,..CHm−1 repre-
sent ensembles of ion channels described as EPMMs. (The
”Leak” is treated as a 1-state channel.) All boxes have the
same input, u (membrane potential), and different outputs,
I0,..Im−1 representing ion currents. Let Nk be the number
of molecules (PMMs) in CHk, and let nk be the number
of states in the PMM representing the k − th channel. Let
Nk

i and ek
i =Nk

i /N
k be, respectively, the occupation number

and the relative occupation number of the i − th state of the
k− th channel. Let us assume, for the sake of simplicity, that
Nk → ∞, so we don’t need to distinguish between ek

i and
its average ek

i in equation 5 from section III. The dynamics
of the cell model of Figure 2 is described by the following
equations, where k = 0, ..m− 1 and i, j = 0, ..nk − 1.

Iext

Ik Im-1

CHk

I0

CHm-1CH0

1/C

+ _ _ _

u

Fig. 2. Dynamical model of a cell with several ion channels
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C
du

dt
= Iext −

m−1∑

k=0

Ik (7)

dek
i

dt
=

∑

j �=i

ak
ij(u)ek

j − ek
i

∑

j �=i

ak
ji(u) (8)

nk−1∑

i=0

ek
i = 1 (9)

Ik =
nk−1∑

i=0

ek
i γ

k
i (u− Ek) (10)

where

• ak
ij(u) is the rate constant of transfer between state j

and state i of the k − th channel. This rate constant is a
function of membrane potential u.

• γk
i is the conductance of the k− th channel in the i− th

state.
• Ek is the reversal potential for the k − th ion.

V. REFORMULATING THE HH MODEL IN TERMS OF TWO

EPMMS

To illustrate some representational possibilities of the PMM
formalism we will reformulate the HH model in terms of two
EPMMs interacting via common membrane potential.

inside membrane

outside membrane

C
GLGNaGK

EK ENa EL

u

Iext

INaIK IL

Fig. 3. Relationship between membrane current and membrane potential

A formal description of the HH model is presented below.
This description is equivalent to that in [5] if one shifts u by
−65mV . Equations 11-14 describe the relationship between
membrane currents and membrane potential. This relationship
can be understood with the help of the circuit shown in
Figure 3. The potassium and sodium conductances (GK and
GNa) depend on membrane potential via the ”gate variables”
n,m, h (the factors n4 and m3h in equations 12 and 13). The
”Leak” conductance, GL, is treated as a constant, gL. (This
conductance is determined mainly by the Cl− ions.) Equations
15, 16, and 17 describe the dynamics of n, m, and h variables,
respectively.

C
du

dt
= Iext − IK − INa − IL (11)

IK = GK(u− EK) = gKn4(u−EK) (12)

INa = GNa(u− ENa) = gNam
3h(u− ENa) (13)

IL = GL(u− EL) = gL(u− EL) (14)
dn

dt
= αn(u)(1 − n) − βn(u)n (15)

dm

dt
= αm(u)(1 −m) − βm(u)m (16)

dh

dt
= αh(u)(1 − h) − βh(u)h (17)

The parameters in equations 11-14 have the following values.
The membrane capacitance C = 1µF/cm2. The reversal
potentials EK = −77mV , ENa = 50mV , EL = −54.4mV .
The conductances gK = 36mS/cm2, gNa = 120mS/cm2

and gL = 0.3mS/cm2.
The rate constants αx(u) and βx(u), where x ∈ {n,m, h},

are functions of membrane potential, u. These functions are
described by the following equations. The numbers in these
equations were found by Hodgkin and Huxley to fit the data
obtained in the experiments with the giant axon of the squid.

αn(u) = 0.01(u + 55)/(1 − exp(−(u + 55)/10)) (18)

βn(u) = 0.125exp(−(u + 65)/80) (19)

αm(u) = 0.1(u + 40)/(1 − exp(−(u + 40)/10)) (20)

βm(u) = 4.0exp(−(u + 65)/80) (21)

αh(u) = 0.07exp(−(u + 60)/20) (22)

βh(u) = 1.0/(1 + exp(−(u + 35)/10)) (23)

0 1 0 1

0 1 0 1

0 1 0 1

0 1 0 1

gate
closed

gate
open

gate
closed

gate
open

βm

βh

βn

αh

βm

βm

βn

βn

βn

αm

αm

αm

αn

αn

αn

αn

m-gates

h-gates

a) b)

n-gates

Fig. 4. The Hodgkin and Huxley gate model
a) Potassium channel with four n-gates.
b) Sodium channel with three m-gates and one h-gate.

A model of a potassium channel with four statistically in-
dependent n-gates is shown schematically in Figure 4a. The
structure of the corresponding 16-state PMM is shown in
Figure 5a. The states of the PMM are represented as 4-digit
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0 0 0 0
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

1 1 0 0
1 0 1 0
1 0 0 1
0 1 1 0
0 1 0 1
0 0 1 1

1 1 1 0
1 1 0 1
1 0 1 1
0 1 1 1

1 1 1 1

αn4
αn3 αn2

αn

βn4
βn3βn2

βn

0 1 2 3 4
βn βn4βn2 βn3

αn3 αn2αn4 αn

a)

b)

channel
open

conductive
state

resting
state

Fig. 5. PMMs corresponding to potassium channel in the HH gate model
a) 16-state PMM with equivalent states grouped
b) Equivalent 5-state PMM

binary numbers, each binary digit describing the state of one
of four n-gates: 0 means that the gate is closed and 1 means
that the gate is open.

Let a10dt be the probability that an n-gate in state 0 jumps
into state 1 (opens) and a01dt be the probability that an n-gate
in state 1 jumps into state 0 (closes) during the time interval
dt. The probabilities of transitions between two states with the
Humming distance k > 1 have factor dtk, so these transitions
can be ignored. This explains the structure of the state diagram
shown in Figure 5a. The coefficients 4, 3, 2, and 1 describe the
number of transfers between the subsets of equivalent states

0 0 0 1
0 0 1 1
0 1 0 1
1 0 0 1

1 1 1 0

αm3

αh

αm2

βm2
βm

0 1 2 3
βm βm2 βm3

αm2 αmαm3

a)

b)

0 0 0 0
0 0 1 0
0 1 0 0
1 0 0 0

0 1 1 0
1 0 1 0
1 1 0 0

0 1 1 1
1 0 1 1
1 1 0 1

1 1 1 1

αm

βm3

αm

βm3

αm3

βm βm2

αm2

4 5 6 7
βm βm2 βm3

αm2 αmαm3

αhβhβhβh βhαh αh

αhαh βhβh αhαhβh βh

channel
open

conductive
state

resting
state

Fig. 6. PMMs corresponding to sodium channel in the HH gate model
a) 16-state PMM with equivalent states grouped (bold binary digit represents
h-gate)
b) Equivalent 8-state PMM

(the states with the same number of open gates). For example,
each molecule with one open gate (e.g., state 0001) can jump
into three possible states with 2 open gates (states 0011, 0101,
and 1001), etc. Replacing the subsets of equivalent states with
single states we get the 5-state PMM shown in Figure 5b.
Using a similar reasoning, one can go from the 4-gate model of
the sodium channel shown in Figure 4b, to the 16-state PMM
shown in Figure 6a, to the 8-state PMM shown in Figure 6b.
The state diagram is more complex than that for potassium
channel because the h-gates are different from the m-gates.

The dynamical model of a cell corresponding to the above
5-state potassium and 8-state sodium PMMs is described by
equations 7-10 from section IV and equations 18-23 from this
section. The model has 11 independent first-order differential
equations describing kinetics of channels (8 equations (8) for
Na+ channel (k=0) plus 5 equations (8) for K+ channel
(k=1) minus 2 equations (9) for k=0,1), vs. the 3 first-order
differential equations 15-17 describing the kinetics of gates
in the HH model. The conductances γk

i have the following
values: γ0

i = 0 for i = {0, ..6}; γ0
7 = gNa = 120mS/cm2;

γ1
i = 0 for i = {0, ..3}; γ1

4 = gK = 36mS/cm2, and
γ2
0 = gL = 0.3mS/cm2. (The ”Leak” is represented as an

ion channel, k=2, with a single state, i = 0.) The relative
occupation numbers ek

i play the same role as the variables n,
m, and h in the HH model. The important difference is that the
ion currents depend linearly on ek

i , whereas in the HH model
there are nonlinear factors n4 and m3h. The linear relationship
expresses the fact that the conductance of N channels is N
times greater than the conductance of a single channel. There
is no such simple interpretation of the above nonlinear factors,
though they work quite well.

HH gate model

HH model

Iext=20µΑ
Monte-Carlo simulation
N=1000

Fig. 7. Comparison of the HH gate model expressed in terms of two EPMMs
with the HH model

I studied the behavior of the HH gate model with the
above PMMs using the cell simulation program mentioned in
section I. Just to make sure that there were no bugs, I simulated
the EPMMs with both the (16,16)-state PMMs and the (5,8)-
state PMMs – there was no difference between these two
theoretically equivalent cases. Then I compared the EPMM
model with the HH model. The results of this comparison are
illustrated in Figure 7. As the plots show, the behavior of the
HH-gate model represented in terms of EPMMs is remarkably
similar to the behavior of the HH mathematical model – this is
in spite of the fact that these behaviors are produced by quite
different sets of equations (11 kinetic equations vs. 3 kinetic
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equations). A discussion of the relationship between the HH
gate model and the HH mathematical model can be found in
[4], p. 585.

The generation of spikes is a very robust phenomenon that
can be produced with many different PMM models for the
K+ and Na+ channels. Figure 8 shows 5-state PMMs that
produced simulation results shown in Figure 9. In this figure,
ak

ji are constants, θ(u − uk
up) and θ(uk

dn − u) are step-up
and step-down functions, where θ(x) is the Heaviside step
function: θ(x) = 0 for x ≤ 0 and θ(x) = 1 for x > 0.
Parameters have the following values:

• Sodium channel (superscript k = 0): a0
10 = a0

21 = a0
32 =

8.0msec−1, u0
up = u0

dn = −52mV , a0
43 = 2.5msec−1,

a0
04 = 1.3msec−1, γ0

0 = γ0
1 = γ0

2 = γ0
4 = 0, γ0

3 =
120mS, E0 = 50mV .

• Potassium channel (superscript k = 1): a1
10 = a1

21 =
a1
32 = a1

43 = 5.0msec−1, u1
up = −52mV , a1

04 =
.25msec−1, γ1

0 = γ1
1 = γ1

2 = γ1
3 = 0, γ1

4 = 36mS,
E1 = −77mV .

• Leak channel (k = 2): γ2
0 = .3mS, E2 = −54.4mV .

0 1 2 3 4

γ4
1=36

potassium
channel

a1
21*θ(u-u1

up)a1
10*θ(u-u1

up)  a1
32*θ(u-u1

up) a1
43*θ(u-u1

up)

a1
04

0 1 2 3 4

γ3
0=120

sodium
channel

a0
21*θ(u-u0

up)a0
10*θ(u-u0

up) a0
32*θ(u-u0

up) a0
43

a0
04*θ(u0

dn -u)

γ0
0=0 γ1

0=0 γ2
0=0

γ0
1=0 γ1

1=0 γ2
1=0 γ3

1=0

γ4
0=0

Fig. 8. The 5-state PMMs with the ring structure used in the simulation
shown in Figure 9

VI. DISCUSSION

To simulate the work of a computing system similar to the
human brain in real time one needs to implement a very large
set of differential equations. These differential equations must
have time constants ranging from a split millisecond to years.
How can such broad range of time constants be implemented
in neural networks? The formalism discussed in this paper
suggests that many of these time constants can be naturally
associated with conformational kinetics of membrane proteins.

a)

b)

c)

N

8

N=1000

N=100

iext=60µΑ

Fig. 9. Spikes produced by the model with the 5-state sodium and potassium
PMMs shown in Figure 8

The big picture appears as follows:

1) A single membrane protein molecule implements a
probabilistic molecular machine (PMM) defined in sec-
tion II. There can be many different types of PMMs
corresponding to different proteins. Note that a specific
”physical” implementation of a PMM is not essential!

2) Due to the laws of statistics, an ensemble of PMMs
(EPMM) embedded in a cell membrane implements
a mixed-signal computer described in section III. The
properties of this computer are determined by the prop-
erties of a single PMM. No interaction among PMMs is
needed, so this statistical implementation is extremely
robust. As mixed-signal systems, EPMMs combine the
dynamical capabilities of analog computers with the
sequencing capabilities of state machines.

3) A cell with several embedded EPMMs interacting via
electrical and/or chemical messages implements a com-
plex mixed-signal dynamical system. The HH model
gives a simple example of such system. Note that a sin-
gle nerve cell have several (many) embedded EPMMs,
so such cell should be viewed as a complex integrated
block rather than a simple atomic unit.

4) Neurons with different functional properties can be
implemented in a uniform way by simply changing the
properties of embedded EPMMs. Such neurons can be
easily tailored to match different computational needs.
This helps to understand why the brain needs many
different membrane proteins and many different neuro-
transmitters.

5) Complex nerve cells are organized in neural networks
that interact with sensory and motor devices to produce
complex behavior. There are many interesting ideas as
to how the networks built from complex mixed-signal
neurons can account for various phenomena of context-
sensitive associative memory, learning, and thinking [6],
[7], [8]. These important topics are beyond the scope of
this paper.
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Modern neuroscience provides ample evidence in favor of
the notion of a single neuron as a complex computing element
the properties of which have direct behavioral (psychological)
implications. See, for example, [9], [10], [11], [12], [4], [13].

Why does the brain need complex neurons? The simplest
general answer to this question is that there is not enough
neurons in the whole brain to implement the required amount
of brain hardware computation in the networks built from
simple neurons (although anything can be computed by such
networks, in principle). An obvious problem arises, for ex-
ample, when one tries to explain the complex dynamical
properties of the brain’s very large context-sensitive associative
memory [7], [2].

How can the differential equations describing the dynamics
of such memory be implemented in the brain? The EPMM
formalism suggests that the states of short-term memory
(STM), and intermediate-term memory (ITM) are represented
by the relative occupation numbers, ei, in equations 5. In
the case of long-term memory (LTM), the absolute numbers
of PMMs are also involved (growth), so equation 6 should
be replaced by equations describing the dynamics of N .
This general approach allows for very complex dynamical
models of memory – each memory cell can afford several
embedded EPMMs. The title of this paper emphasizes the
mixed-signal character of the statistical computer implemented
as an EPMM. What is the advantage of a mixed-signal EPMM
as compared with a purely analog dynamical system? The
main advantage is that an EPMM can work as a sequencer.
Consider, for example, the 5-state PMM shown in Figure 10.
The rate constants of transfers 0 → 1 and 3 → 4 depend
on input u, say, the membrane potential. The rate constants
of transfers 0 → 3 and 1 → 2 depend on input s, say, the
concentration of a second messenger. For the sake of simplic-
ity, let us assume that a10(u) = a43(u) = const1θ(u − u0)
and a30(s) = a21(s) = const2θ(s − s0), where θ(x) is the
Heaviside step function. Let the PMM be in state 0. If event
u > u0 precedes event s > s0, the PMM goes to state 2.
If event s > s0 precedes event u > u0, the PMM goes to
state 4. Using this idea, it is easy to represent quite complex
temporal phenomena the outcome of which depends on the
order of input events. Such temporal phenomena present a
difficult problem for the computational models that don’t have

Fig. 10. Representing effects that depend on the order of input events

discrete states and cannot switch these states depending on
inputs.
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